Do We Need Language-Specific Fact-Checking Models? The Case of Chinese
CoRR(2024)
Abstract
This paper investigates the potential benefits of language-specific
fact-checking models, focusing on the case of Chinese. We demonstrate the
limitations of methods such as translating Chinese claims and evidence into
English or directly using multilingual large language models (e.g. GPT4),
highlighting the need for language-specific systems. We further develop a
state-of-the-art Chinese fact-checking system that, in contrast to previous
approaches which treat evidence selection as a pairwise sentence classification
task, considers the context of sentences. We also create an adversarial dataset
to identify biases in our model, and while they are present as in English
language datasets and models, they are often specific to the Chinese culture.
Our study emphasizes the importance of language-specific fact-checking models
to effectively combat misinformation.
MoreTranslated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined