谷歌浏览器插件
订阅小程序
在清言上使用

Metabolomics Responses and Tolerance of Pseudomonas Aeruginosa under Acoustic Vibration Stress.

PloS one(2024)

引用 0|浏览5
暂无评分
摘要
Sound has been shown to impact microbial behaviors. However, our understanding of the chemical and molecular mechanisms underlying these microbial responses to acoustic vibration is limited. In this study, we used untargeted metabolomics analysis to investigate the effects of 100-Hz acoustic vibration on the intra- and extracellular hydrophobic metabolites of P. aeruginosa PAO1. Our findings revealed increased levels of fatty acids and their derivatives, quinolones, and N-acylethanolamines upon sound exposure, while rhamnolipids (RLs) showed decreased levels. Further quantitative real-time polymerase chain reaction experiments showed slight downregulation of the rhlA gene (1.3-fold) and upregulation of fabY (1.5-fold), fadE (1.7-fold), and pqsA (1.4-fold) genes, which are associated with RL, fatty acid, and quinolone biosynthesis. However, no alterations in the genes related to the rpoS regulators or quorum-sensing networks were observed. Supplementing sodium oleate to P. aeruginosa cultures to simulate the effects of sound resulted in increased tolerance of P. aeruginosa in the presence of sound at 48 h, suggesting a potential novel response-tolerance correlation. In contrast, adding RL, which went against the response direction, did not affect its growth. Overall, these findings provide potential implications for the control and manipulation of virulence and bacterial characteristics for medical and industrial applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要