Tunable Adhesion for All-Dry Transfer of 2D Materials Enabled by the Freezing of Transfer Medium

ADVANCED MATERIALS(2024)

引用 0|浏览10
暂无评分
摘要
The real applications of chemical vapor deposition (CVD)-grown graphene films require the reliable techniques for transferring graphene from growth substrates onto application-specific substrates. The transfer approaches that avoid the use of organic solvents, etchants, and strong bases are compatible with industrial batch processing, in which graphene transfer should be conducted by dry exfoliation and lamination. However, all-dry transfer of graphene remains unachievable owing to the difficulty in precisely controlling interfacial adhesion to enable the crack- and contamination-free transfer. Herein, through controllable crosslinking of transfer medium polymer, the adhesion is successfully tuned between the polymer and graphene for all-dry transfer of graphene wafers. Stronger adhesion enables crack-free peeling of the graphene from growth substrates, while reduced adhesion facilitates the exfoliation of polymer from graphene surface leaving an ultraclean surface. This work provides an industrially compatible approach for transferring 2D materials, key for their future applications, and offers a route for tuning the interfacial adhesion that would allow for the transfer-enabled fabrication of van der Waals heterostructures. Herein, by freezing the transfer medium to induce the crosslinking of polymer chains, the adhesion is successfully tuned between graphene and polymer for wafer-scale all-dry of graphene and MoS2 onto various substrates, compatible with industrial production for future applications. image
更多
查看译文
关键词
CVD graphene films,dry transfer,graphene transfer,graphene wafers,ultraclean surface
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要