Probabilistic ODE Solvers for Integration Error-Aware Model Predictive Control

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Appropriate time discretization is crucial for nonlinear model predictive control. However, in situations where the discretization error strongly depends on the applied control input, meeting accuracy and sampling time requirements simultaneously can be challenging using classical discretization methods. In particular, neither fixed-grid nor adaptive-grid discretizations may be suitable, when they suffer from large integration error or exceed the prescribed sampling time, respectively. In this work, we take a first step at closing this gap by utilizing probabilistic numerical integrators to approximate the solution of the initial value problem, as well as the computational uncertainty associated with it, inside the optimal control problem (OCP). By taking the viewpoint of probabilistic numerics and propagating the numerical uncertainty in the cost, the OCP is reformulated such that the optimal input reduces the computational uncertainty insofar as it is beneficial for the control objective. The proposed approach is illustrated using a numerical example, and potential benefits and limitations are discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要