Shell evolution aboveZ,N=50within Skyrme density functional theory: The impact of deformation and tensor interactions

Physical Review C(2017)

引用 0|浏览0
暂无评分
摘要
Background: Recent years have seen considerable effort in associating the shell evolution (SE) for a chain of isotones or isotopes with the underlying nuclear interactions. In particular, it has been fairly well established that the tensor part of the Skyrme interaction is indispensable for understanding certain SE above $Z,N=50$ shell closures, as a function of nucleon numbers.Purpose: The purpose of the present work is twofold: (1) to study the effect of deformation due to blocking on the SE above $Z,N=50$ shell closures and (2) to examine the optimal parametrizations in the tensor part which gives a proper description of the SE above $Z,N=50$ shell closures.Methods: I use the Skyrme-Hartree-Fock-Bogoliubov (SHFB) method to compute the even-even vacua of the $Z=50$ isotopes and $N=50$ isotones. For Sb and odd-$A$ Sn isotopes, I perform calculations with a blocking procedure which accounts for the polarization effects, including deformations.Results: The blocking SHFB calculations show that the light odd-$A$ Sb isotopes, with only one valence proton occupying down-sloping $\mathrm{\ensuremath{\Omega}}=11/{2}^{\ensuremath{-}}$ and $\mathrm{\ensuremath{\Omega}}=7/{2}^{+}$ Nilsson orbits, assume finite oblate deformations. This reduces the energy differences between $11/{2}^{\ensuremath{-}}$ and $7/{2}^{+}$ states by about 500 keV for ${}_{51}{\mathrm{Sb}}_{56\ensuremath{-}66}$, bringing the energy-difference curve closer to the experimental one. With une2t1 energy density functional (EDF), which differs from unedf2 parametrization by tensor terms, a better description of the slope of $\mathrm{\ensuremath{\Delta}}e(\ensuremath{\pi}1{h}_{11/2}\ensuremath{-}\ensuremath{\pi}1{g}_{7/2})$ as a function of neutron number has been obtained. However, the trend of $\mathrm{\ensuremath{\Delta}}e(\ensuremath{\pi}1{g}_{7/2}\ensuremath{-}\ensuremath{\pi}2{d}_{5/2})$ curve is worse using une2t1 EDF. $\mathrm{\ensuremath{\Delta}}e(\ensuremath{\nu}3{s}_{1/2}\ensuremath{-}\ensuremath{\nu}2{d}_{5/2})$ and $\mathrm{\ensuremath{\Delta}}e(\ensuremath{\nu}1{g}_{7/2}\ensuremath{-}\ensuremath{\nu}2{d}_{5/2})$ curve for $N=50$ isotones using une2t1 seems to be consistent with experimental data. The neutron SE of $\mathrm{\ensuremath{\Delta}}e(\ensuremath{\nu}1{h}_{11/2}\ensuremath{-}\ensuremath{\nu}1{g}_{7/2})$ and $\mathrm{\ensuremath{\Delta}}e(\ensuremath{\nu}1{g}_{7/2}\ensuremath{-}\ensuremath{\nu}2{d}_{5/2})$ for Sn isotopes are shown to be sensive to ${\ensuremath{\alpha}}_{T}$ tensor parameter.Conclusions: Within the Skyrme self-consistent mean-field model, the deformation degree of freedom has to be taken into account for Sb isotopes, $N=51$ isotones, and odd-$A$ Sn isotopes when discussing variation of quantities like shell gap etc. The tensor terms are important for describing the strong variation of $\mathrm{\ensuremath{\Delta}}E({\mathrm{\ensuremath{\Omega}}}^{\ensuremath{\pi}}=11/{2}^{\ensuremath{-}}\ensuremath{-}7/{2}^{+})$ in Sb isotopes. The SE of $1/{2}^{+}$ and $7/{2}^{+}$ states in $N=51$ isotones may show signature for the existence of tensor interaction. The experimental excitation energies of $11/{2}^{\ensuremath{-}}$ and $7/{2}^{+}$ states in odd-$A$ Sn isotopes close to $^{132}\mathrm{Sn}$ give prospects for constraining the ${\ensuremath{\alpha}}_{T}$ parameter.
更多
查看译文
关键词
skyrme density,deformation,tensor interactions,shell,functional theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要