The impact of vegetative and solid roadway barriers on particulate matter concentration in urban settings

PLOS ONE(2024)

引用 0|浏览0
暂无评分
摘要
A potentially important approach for reducing exposure to traffic-related air pollution (TRAP) is the use of roadside barriers to reduce dispersion from highway sources to adjacent populated areas. The Trees Reducing Environmental Exposures (TREE) study investigated the effect of vegetative and solid barriers along major controlled-access highways in Atlanta, Georgia, USA by simultaneously sampling TRAP concentration at roadside locations in front of barriers and at comparison locations down-range. We measured black carbon (BC) mass concentration, particle number concentration (PNC), and the size distribution of ultrafine aerosols. Our sample sites encompassed the range of roadway barrier options in the Atlanta area: simple chain-link fences, solid barriers, and vegetative barriers. We used Generalized Linear Mixed Models (GLMMs) to estimate the effect of barrier type on the ratio of particle concentrations at the comparison site relative to the roadside site while controlling for covariates including wind direction, temperature, relative humidity, traffic volume, and distance to the roadway. Vegetative barriers exhibited the greatest TRAP reduction in terms of BC mass concentration (37% lower behind a vegetative barrier) as well as PNC (6.7% lower), and sensitivity analysis was consistent with this effect being more pronounced when the barrier was downwind of the highway. The ultrafine size distribution was comprised of modestly smaller particles on the highway side of the barrier. Non-highway particle sources were present at all sample sites, most commonly motor vehicle emissions from nearby arterials or secondary streets, which may have obscured the effect of roadside barriers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要