The spectral boundary of the Asymmetric Simple Exclusion Process (ASEP) – free fermions, Bethe ansatz and random matrix theory

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
In non-equilibrium statistical mechanics, the Asymmetric Simple Exclusion Process (ASEP) serves as a paradigmatic example. We investigate the spectral characteristics of the ASEP, focusing on the spectral boundary of its generator matrix. We examine finite ASEP chains of length L, under periodic (pbc) and open boundary conditions (obc). Notably, the spectral boundary exhibits L spikes for pbc and L+1 spikes for obc. Treating the ASEP generator as an interacting non-Hermitian fermionic model, we extend the model to have tunable interaction. In the non-interacting case, the analytically computed many-body spectrum shows a spectral boundary with prominent spikes. For pbc, we use the coordinate Bethe ansatz to interpolate between the noninteracting case to the ASEP limit, and show that these spikes stem from clustering of Bethe roots. The robustness of the spikes in the spectral boundary is demonstrated by linking the ASEP generator to random matrices with trace correlations or, equivalently, random graphs with distinct cycle structures, both displaying similar spiked spectral boundaries.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要