Theory of Majorana zero modes in unconventional superconductors

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Majorana fermions are spin-1/2 neutral particles that are their own antiparticles and were initially predicted by Ettore Majorana in particle physics but their observation still remains elusive. The concept of Majorana fermions has been borrowed into condensed matter physics, where, unlike particle physics, Majorana fermions emerge as zero-energy quasiparticles that can be engineered by combining electrons and holes and have therefore been coined Majorana zero modes. In this review, we provide a pedagogical explanation of the basic properties of Majorana zero modes in unconventional superconductors and their consequences in experimental observables, putting a special emphasis on the initial theoretical discoveries. In particular, we first show that Majorana zero modes are self-conjugated and emerge as a special type of zero energy surface Andreev bound states at the boundary of unconventional superconductors. We then explore Majorana zero modes in one-dimensional spin-polarized p-wave superconductors, where we address the formation of topological superconductivity and the physical realization in superconductor-semiconductor hybrids. In this part we highlight that Majorana quasiparticles appear as zero-energy edge states, exhibiting charge neutrality, spin-polarized, and spatial nonlocality as unique properties that can be already seen from their energies and wavefunctions. Next, we discuss analytically obtained Green's functions of p-wave superconductors and demonstrate that the emergence of Majorana zero modes is always accompanied by the formation of odd-frequency spin-triplet pairing as a unique result of the self-conjugate nature of Majorana zero modes. We finally address the signatures of Majorana zero modes in tunneling spectroscopy, including the anomalous proximity effect, and the phase-biased Josephson effect.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要