Unlocking the interaction of organophosphorus pesticide residues with ecosystem: Toxicity and bioremediation

ENVIRONMENTAL RESEARCH(2024)

引用 0|浏览1
暂无评分
摘要
Organophosphorus adulteration in the environment creates terrestrial and aquatic pollution. It causes acute and subacute toxicity in plants, humans, insects, and animals. Due to the excessive use of organophosphorus pesticides, there is a need to develop environmentally friendly, economical, and bio-based strategies. The microbiomes, that exist in the soil, can reduce the devastating effects of organophosphates. The use of cell -free enzymes and yeast is also an advanced method for the degradation of organophosphates. Plant -friendly bacterial strains, that exist in the soil, can help to degrade these contaminants by oxidation-reduction reactions, enzymatic breakdown, and adsorption. The bacterial strains mostly from the genus Bacillus, Pseudomonas, Acinetobacter, Agrobacterium, and Rhizobium have the ability to hydrolyze the bonds of organophosphate compounds like profenofos, quinalphos, malathion, methyl -parathion, and chlorpyrifos. The native bacterial strains also promote the growth abilities of plants and help in detoxification of organophosphate residues. This bioremediation technique is easy to use, relatively cost-effective, very efficient, and ensures the safety of the environment. This review covers the literature gap by describing the major effects of organophosphates on the ecosystem and their bioremediation by using native bacterial strains.
更多
查看译文
关键词
Organophosphorus pesticides,Effects,Biodegradation,Microorganisms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要