谷歌浏览器插件
订阅小程序
在清言上使用

Novel magneto-electrocatalyst Cr2CO2-MXene for boosting nitrogen reduction to ammonia.

Materials horizons(2024)

引用 0|浏览17
暂无评分
摘要
Ammonia (NH3) plays important roles in chemistry, the environment, and energy; however, the synthesis of NH3 relies heavily on the Haber-Bosch process, causing serious environmental pollution and energy consumption. A clean and effective strategy for the synthesis of NH3 involves nitrogen (N2) being transformed to ammonia (NH3) using electrocatalysis. Adjusting the magnetism of electrocatalysts may improve their performance, and therefore, four magnetic states, nonmagnetic (NM), ferromagnetic (FM), interlayer antiferromagnetic (Inter-AFM), and intra-layer antiferromagnetic (Intra-AFM) Cr2CO2-MXene were designed to explore magnetoelectrocatalysis performance using well-defined density functional theory (DFT) calculations in this study. Upon comparing the nitrogen reduction limiting potentials of N2 molecules on the surface of the four different magnetic states in Cr2CO2-MXene, and the selectivity calculations of the hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR), the Inter-AFM Cr2CO2-MXene is shown to be a better NRR electrocatalyst than the other three cases. This study paves way to unravel the mystery of the spin-catalytic mechanism and will lay a solid foundation for eNRR electrocatalysts with magnetic materials for environmental and energy applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要