From Particle Currents to Tracer Diffusion: Universal Correlation Profiles in Single-File Dynamics.

Physical review letters(2024)

引用 0|浏览0
暂无评分
摘要
Single-file transport refers to the motion of particles in a narrow channel, such that they cannot bypass each other. This constraint leads to strong correlations between the particles, described by correlation profiles, which measure the correlation between a generic observable and the density of particles at a given position and time. They have recently been shown to play a central role in single-file systems. Up to now, these correlations have only been determined for diffusive systems in the hydrodynamic limit. Here, we consider a model of reflecting point particles on the infinite line, with a general individual stochastic dynamics. We show that the correlation profiles take a simple universal form, at arbitrary time. We illustrate our approach by the study of the integrated current of particles through the origin, and apply our results to representative models such as Brownian particles, run-and-tumble particles and Lévy flights. We further emphasise the generality of our results by showing that they also apply beyond the 1D case, and to other observables.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要