Development of Mupirocin-Impregnated Bacterial Cellulosic Transdermal Patches for the Management of Skin Infection

ACS OMEGA(2024)

引用 0|浏览3
暂无评分
摘要
The present study reports the production of bacterial cellulose (BC) membranes using Komagataeibacter hansenii for the development of transdermal wound healing patches. BC-based transdermal patches were developed by impregnating varied concentrations of antibiotic mupirocin and characterized by SEM, FTIR, TGA, and DSC to study the interaction of BC with antibiotic. Developed patches were evaluated for antimicrobial activity, in vitro drug release study, in vivo efficacy, and acute dermal toxicity studies. The antibacterial activity of mupirocin-impregnated patches (mup-BC) showed an inhibition zone from 26.16 +/- 0.76 to 35.86 +/- 0.61 mm. The in vivo efficacy of mup-BC patches on the superficial abrasion mouse model infected with MRSA 15187 was determined. A single application of the mup-BC (Batch-3) showed a significant decrease up to 2.5 log(10) colony-forming units (CFUs) in the infected skin. Acute dermal toxicity study showed no notable sign of toxicity. Pharmacokinetic study indicated that an application of mup-BC (Batch-3) showed a peak plasma concentration of around 1.5 mu g/mL mupirocin. The overall preparation, ease of application, and efficacy results clearly indicate that the patches developed in the present study find immense application in the healthcare sector, especially for the treatment of burn or dermal wound infections.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要