Investigating the Nature and Structure of Inner Regions in Active Galactic Nuclei

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
The innermost regions of Active Galactic Nuclei (AGN) are critical for understanding galaxy evolution and the dynamics of matter near a Supermassive Black Hole (SMBH). Yet, due to smaller angular projections, it is very difficult to resolve these regions. This thesis explores indirect methods to understand these objects. We use the reverberation mapping technique to estimate accretion disk sizes for a sample of AGN, finding that the computed disk sizes are, on average, 3.9 times larger than the Shakura Sunyev (SS) standard disk model predictions. We also find a weak correlation between the obtained accretion disk sizes and the SMBH mass. We present initial results from a new accretion disk monitoring program to probe the accretion disk structure of Super Eddington Accreting AGN. We report that the disk sizes are about 4 times larger than the SS disk model. We calibrate the narrow-band photometric reverberation mapping (PRM) technique to develop tools for a large systematic narrow-band PRM project. We use simulations to test the effect of cadence, variability of the light curves, and the length of light curves in recovering the reverberation lags. We study the dichotomy between AGNs with and without detected jets using the method of microvariability observed in the accretion disk continuum. We find that AGNs with confirmed jets are about 3 times more variable on short time scales than the AGNs without a confirmed jet. By performing statistical analysis on a large sample of low luminosity AGNs, we find that the NLSy1 galaxies are more likely to have outflow signatures than their broad-line counterparts, hinting toward the disk wind origin of the material in BLR. We find that the principal components for NLSy1 galaxies differ from the BLSy1 galaxies, suggesting that the NLSy1 galaxies could be occupying their own parameter space.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要