Explicit and implicit locomotor learning in individuals with chronic hemiparetic stroke

biorxiv(2024)

引用 0|浏览3
暂无评分
摘要
Motor learning involves both explicit and implicit processes that are fundamental for acquiring and adapting complex motor skills. However, stroke may damage the neural substrates underlying explicit and/or implicit learning, leading to deficits in overall motor performance. While both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke when tested during a task that elicits dissociable contributions from both. Here, we compared explicit and implicit locomotor learning in individuals with chronic stroke to age- and sex-matched neurologically intact controls. We assessed implicit learning using split-belt adaptation (where two treadmill belts move at different speeds). We assessed explicit learning (i.e., strategy-use) using visual feedback during split-belt walking to help individuals explicitly correct for step length errors created by the split-belts. The removal of visual feedback after the first 40 strides of split-belt walking, combined with task instructions, minimized contributions from explicit learning for the remainder of the task. We utilized computational modeling to determine the individual contributions of explicit and implicit processes to overall behavioral change. The computational and behavioral analyses revealed that, compared to controls, individuals with chronic stroke demonstrated deficits in both explicit and implicit contributions to locomotor learning, a result that runs counter to prior work testing each process individually during gait. Since post-stroke locomotor rehabilitation involves interventions that rely on both explicit and implicit motor learning, future work should determine how locomotor rehabilitation interventions can be structured to optimize overall motor learning. New and noteworthy Motor learning involves both implicit and explicit processes, the underlying neural substrates of which could be damaged by after stroke. While both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke. Using a locomotor task that elicits dissociable contributions from both processes and computational modeling, we found evidence that chronic stroke causes deficits in both explicit and implicit locomotor learning. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要