Hypobaric type oxygenators - physics and physiology

Phatiwat Chotimol, William Lansdowne, David Machin, Kressle Binas,Gianni D. Angelini,Ben Gibbison

Perfusion(2024)

引用 0|浏览1
暂无评分
摘要
Brain injury is still a serious complication after cardiac surgery. Gaseous microemboli (GME) are known to contribute to both short and longer-term brain injury after cardiac surgery. Hypobaric and novel dual-chamber oxygenators use the physical behaviors and properties of gases to reduce GME. The aim of this review was to present the basic physics of the gases, the mechanism in which the hypobaric and dual-chamber oxygenators reduce GME, their technical performance, the preclinical studies, and future directions. The gas laws are reviewed as an aid to understanding the mechanisms of action of oxygenators. Hypobaric-type oxygenators employ a high oxygen, no nitrogen environment creating a steep concentration gradient of nitrogen out of the blood and into the oxygenator, reducing the risk of GMEs forming. Adequately powered clinical studies have never been carried out with a hypobaric or dual-chamber oxygenator. These are required before such technology can be recommended for widespread clinical use.
更多
查看译文
关键词
hypobaric oxygenator,dual-chamber oxygenator,gaseous microemboli,physical properties of gases,cardiopulmonary bypass
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要