Porphyrin-Thiophene Based Conjugated Polymer Cathode with High Capacity for Lithium-Organic Batteries

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2024)

引用 0|浏览3
暂无评分
摘要
Organic electrode materials are promising for next-generation energy storage materials due to their environmental friendliness and sustainable renewability. However, problems such as their high solubility in electrolytes and low intrinsic conductivity have always plagued their further application. Polymerization to form conjugated organic polymers can not only inhibit the dissolution of organic electrodes in the electrolyte, but also enhance the intrinsic conductivity of organic molecules. Herein, we synthesized a new conjugated organic polymer (COPs) COP500-CuT2TP (poly [5,10,15,20-tetra(2,2 '-bithiophen-5-yl) porphyrinato] copper (II)) by electrochemical polymerization method. Due to the self-exfoliation behavior, the porphyrin cathode exhibited a reversible discharge capacity of 420 mAh g-1, and a high specific energy of 900 Wh Kg-1 with a first coulombic efficiency of 96 % at 100 mA g-1. Excellent cycling stability up to 8000 cycles without capacity loss was achieved even at a high current density of 5 A g-1. This highly conjugated structure promotes COP500-CuT2TP combined high energy density, high power density, and good cycling stability, which would open new opportunity for the designable and versatile organic electrodes for electrochemical energy storage. A new porphyrin conjugated polymer cathode, COP500-CuT2TP is achieved under electrochemical polymerization. Self-exfoliation of polymer cathode promotes charge storage, leading to a specific capacity of 420 mAh g-1 and 900 Wh Kg-1. Excellent cycling stability up to 8000 cycles at 5 A g-1 is achieved. Mechanistic insights by combining experimental and computational investigations supports the charge storage performance. image
更多
查看译文
关键词
porphyrin,thiophene,conjugated organic polymers,lithium-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要