Copper Deposition in Polydopamine Nanostructure to Promote Cuproptosis by Catalytically Inhibiting Copper Exporters of Tumor Cells for Cancer Immunotherapy.

Small (Weinheim an der Bergstrasse, Germany)(2024)

引用 0|浏览4
暂无评分
摘要
Cuproptosis is an emerging programmed cell death, displaying great potential in cancer treatment. However, intracellular copper content to induce cuproptosis is unmet, which mainly ascribes to the intracellular pumping out equilibrium mechanism by copper exporter ATP7A and ATP7B. Therefore, it is necessary to break such export balance mechanisms for desired cuproptosis. Mediated by diethyldithiocarbamate (DTC) coordination, herein a strategy to efficiently assemble copper ions into polydopamine nanostructure (PDA-DTC/Cu) for reprogramming copper metabolism of tumor is developed. The deposited Cu2+ can effectively trigger the aggregation of lipoylated proteins to induce cuproptosis of tumor cells. Beyond elevating intracellular copper accumulation, PDA-DTC/Cu enables to break the balance of copper metabolism by disrupting mitochondrial function and restricting the adenosine triphosphate (ATP) energy supply, thus catalytically inhibiting the expressions of ATP7A and ATP7B of tumor cells to enhance cuproptosis. Meanwhile, the killed tumor cells can induce immunogenic cell death (ICD) to stimulate the immune response. Besides, PDA-DTC/Cu NPs can promote the repolarization of tumor-associated macrophages (TAMs ) to relieve the tumor immunosuppressive microenvironment (TIME). Collectively, PDA-DTC/Cu presented a promising "one stone two birds" strategy to realize copper accumulation and inhibit copper export simultaneously to enhance cuproptosis for 4T1 murine breast cancer immunotherapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要