Determining the upper bound of code distance of quantum stabilizer codes through Monte Carlo method based on fully decoupled belief propagation

arxiv(2024)

引用 0|浏览7
暂无评分
摘要
Code distance is an important parameter for quantum stabilizer codes (QSCs). Directly precisely computing it is an NP-complete problem. However, the upper bound of code distance can be computed by some efficient methods. In this paper, employing the idea of Monte Carlo method, we propose the algorithm of determining the upper bound of code distance of QSCs based on fully decoupled belief propagation. Our algorithm shows high precision - the upper bound of code distance determined by the algorithm of a variety of QSCs whose code distance is known is consistent with actual code distance. Besides, we explore the upper bound of logical X operators of Z-type Tanner-graph-recursive-expansion (Z-TGRE) code and Chamon code, which is a kind of XYZ product code constructed by three repetition codes. The former is consistent with the theoretical analysis, and the latter implies the code distance of XYZ product codes can very likely achieve O(N^2/3), which supports the conjecture of Leverrier et al..
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要