谷歌浏览器插件
订阅小程序
在清言上使用

Quantum State-to-state Nonadiabatic Dynamics of the Charge Transfer Reaction H+ + NO(X2Π) → H + NO+(X1Σ+): Influence of Ro-Vibrational Excitation of NO.

Journal of chemical physics online/˜The œJournal of chemical physics/Journal of chemical physics(2024)

引用 0|浏览4
暂无评分
摘要
Quantum state-to-state nonadiabatic dynamics of the charge transfer reaction H+ + NO(X2Π, vi = 1, 3, ji = 0, 1) → H + NO+(X1Σ+) has been studied based on the recently constructed diabatic potential energy matrix. It was found that the vibrational excitation of reactant NO inhibits the reactivity, while the rotational excitation of reactant NO has little effect on the reaction probability. These attributes were also observed in the semi-classical trajectory calculations employed in the adiabatic representation. Such an inhibitory effect of the vibrational excitation of reactant NO was owing to lower accessibility of the conical intersection and avoided crossing regions, which are located in the wells with respect to the Π diabat, as evidenced by the analysis of the population of the time-independent wave functions. Calculated vibrational state distributions of the product show that the decrease of the reaction mainly leads to the less formation of low vibrational states (vf < 6), and the product vibrational state distributions are more evenly populated for vi = 1 and 3, suggesting a non-statistical behavior. However, the overall shapes of the product rotational distributions remain unchanged, indicating that the redistribution of energy into the rotation of product NO is sufficient in the charge transfer process between H+ and NO. While the reaction is dominated by the forward and backward scattering in differential cross sections (DCSs), consistent with the complex-forming mechanism, a clear forward bias in the DCSs appears, indicating that the occurrence of the reaction is not sufficiently long to undergo the whole phase space of the interaction configurations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要