Sensitizing methicillin-resistant Staphylococcus aureus (MRSA) to cefuroxime: the synergic effect of bicarbonate and the wall teichoic acid inhibitor ticlopidine

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY(2024)

引用 0|浏览1
暂无评分
摘要
Methicillin-resistant Staphylococcus aureus (MRSA) strains are a major challenge for clinicians due, in part, to their resistance to most beta-lactams, the first-line treatment for methicillin-susceptible S. aureus. A phenotype termed "NaHCO3-responsiveness" has been identified, wherein many clinical MRSA isolates are rendered susceptible to standard-of-care beta-lactams in the presence of physiologically relevant concentrations of NaHCO3, in vitro and ex vivo; moreover, such "NaHCO3-responsive" isolates can be effectively cleared by beta-lactams from target tissues in experimental infective endocarditis (IE). One mechanistic impact of NaHCO3 exposure on NaHCO3-responsive MRSA is to repress WTA synthesis. This NaHCO3 effect mimics the phenotype of tarO-deficient MRSA, including sensitization to the PBP2-targeting beta-lactam, cefuroxime (CFX). Herein, we further investigated the impacts of NaHCO3 exposure on CFX susceptibility in the presence and absence of a WTA synthesis inhibitor, ticlopidine (TCP), in a collection of clinical MRSA isolates from skin and soft tissue infections (SSTI) and bloodstream infections (BSI). NaHCO3 and/or TCP enhanced susceptibility to CFX in vitro, by both minimum inhibitor concentration (MIC) and time-kill assays, as well as in an ex vivo simulated endocarditis vegetations (SEV) model, in NaHCO3-responsive MRSA. Furthermore, in experimental IE (presumably in the presence of endogenous NaHCO3), pre-exposure to TCP prior to infection sensitized the NaHCO3-responsive MRSA strain (but not the non-responsive strain) to enhanced clearances by CFX in target tissues. These data support the notion that NaHCO3 is acting similarly to WTA synthesis inhibitors, and that such inhibitors have potential translational applications in the treatment of certain MRSA strains in conjunction with specific beta-lactam agents.
更多
查看译文
关键词
methicillin-resistant Staphylococcus aureus (MRSA),beta-lactams,NaHCO3-responsive,penicillin-binding proteins (PBPs),wall teichoic acid (WTA) synthesis,experimental infective endocarditis (IE)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要