Mechanistic Insights into the Selectivity for Arsenic over Phosphate Adsorption by Fe3+-Cross-Linked Chitosan Using DFT

Obinna Nwokonkwo,Christopher Muhich

JOURNAL OF PHYSICAL CHEMISTRY B(2024)

引用 0|浏览1
暂无评分
摘要
Fe3+-cross-linked chitosan exhibits the potential for selectively adsorbing arsenic (As) over competing species, such as phosphate, for water remediation. However, the effective binding mechanisms, bond nature, and controlling factor(s) of the selectivity are poorly understood. This study employs ab initio calculations to examine the competitive binding of As(V), P(V), and As(III) to neat chitosan and Fe3+-chitosan. Neat chitosan fails to selectively bind As oxyanions, as all three oxyanions bind similarly via weak hydrogen bonds with preferences of P(V) = As(V) > As(III). Conversely, Fe3+-chitosan selectively binds As(V) over As(III) and P(V) with binding energies of -1.9, -1, and -1.8 eV for As(V), As(III), and P(V), respectively. The preferences are due to varying Fe3+-oxyanion donor-acceptor characteristics, forming covalent bonds with distinct strengths (Fe-O bond ICOHP values: - 4.9 eV/bond for As(V), - 4.7 eV/bond for P(V), and -3.5 eV/bond for As(III)). Differences in pK a between As(V)/P(V) and As(III) preclude any preference for As(III) under typical environmental pH conditions. Furthermore, our calculations suggest that the binding selectivity of Fe3+-chitosan exhibits a pH dependence. These findings enhance our understanding of the Fe3+-oxyanion interaction crucial for preferential oxyanion binding using Fe3+-chitosan and provide a lens for further exploration into alternative transition-metal-chitosan combinations and coordination chemistries for applications in selective separations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要