Proteolytic Cleavage of the ENaC gamma Subunit: Impact Upon Na+ and K+ Handling

biorxiv(2024)

引用 0|浏览7
暂无评分
摘要
The ENaC gamma subunit is essential for homeostasis of Na+, K+, and body fluid. Dual subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146 in mouse). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (Q4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of Q4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, Q4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in Q4/Q4 mice was not altered. Q4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of gamma subunit cleavage should not be used in isolation to evaluate ENaC activity. Further, factors independent of gamma subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要