谷歌浏览器插件
订阅小程序
在清言上使用

Pectin-Coated Iron-Based Metal-Organic Framework Nanoparticles for Enhanced Foliar Adhesion and Targeted Delivery of Fungicides.

ACS nano(2024)

引用 0|浏览12
暂无评分
摘要
Conventional agrochemicals are underutilized due to their large particle sizes, poor foliar retention rates, and difficult translocation in plants, and the development of functional nanodelivery carriers with high adhesion to the plant body surface and efficient uptake and translocation in plants remains challenging. In this study, a nanodelivery system based on a pectin-encapsulated iron-based MOF (TF@Fe-MOF-PT NPs) was constructed to enhance the utilization of thifluzamide (TF) in rice plants by taking advantage of the pectin affinity for plant cell walls. The prepared TF@Fe-MOF-PT NPs exhibited an average particle size of 126.55 nm, a loading capacity of 27.41%, and excellent dual-stimulus responses to reactive oxygen species and pectinase. Foliar washing experiments showed that the TF@Fe-MOF-PT NPs were efficiently adhered to the surfaces of rice leaves and stems. Confocal laser scanning microscopy showed that fluorescently labeled TF@Fe-MOF-PT NPs were bidirectionally delivered through vascular bundles in rice plants. The in vitro bactericidal activity of the TF@Fe-MOF-PT NPs showed better inhibitory activity than that of a TF suspension (TF SC), with an EC50 of 0.021 mg/L. A greenhouse test showed that the TF@Fe-MOF-PT NPs were more effective than TF SC at 7 and 14 d, with control effects of 85.88 and 78.59%, respectively. It also reduced the inhibition of seed stem length and root length by TF SC and promoted seedling growth. These results demonstrated that TF@Fe-MOF-PT NPs can be used as a pesticide nanodelivery system for efficient delivery and intelligent release in plants and applied for sustainable control of pests and diseases.
更多
查看译文
关键词
Metal-organic frameworks,Postsyntheticmodification,Pectin,Thifluzamide,Rhizoctonia solani
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要