Chrome Extension
WeChat Mini Program
Use on ChatGLM

A Nature-Inspired Method to Mine Top-k Multi-Level High-Utility Itemsets

CYBERNETICS AND SYSTEMS(2023)

Cited 0|Views9
No score
Abstract
High-Utility Itemset Mining (HUIM) is designed to discover sets of itemsets that can bring high profits from the database. However, HUIM encounters several challenges in picking a suitable minimum utility threshold for each database. A class of algorithms that select the top-k itemsets based on their utility has been proposed to address this issue. Although traditional top-k HUI mining algorithms do not require a specific threshold, they tend to be very time-consuming and memory-intensive when dealing with large datasets. To tackle the combinational complexity involved in HUIM algorithms, nature-inspired methods have been suggested and adopted. Nonetheless, these algorithms have traditionally focused on handling conventional, often overlooking critical data structures like product hierarchies. Consequently, they fail to extract crucial insight from this novel database format. Thus, our research introduces a heuristic-based algorithm designed to leverage top-k itemsets from databases enriched with item taxonomy data. We propose a technique involving the early pruning of unpromising items to enhance mining efficiency. Experimental evaluations are conducted on several datasets to assess the method's performance, both with and without adopting this strategy, demonstrating its effectiveness.
More
Translated text
Key words
Cross-entropy,data mining,high-utility itemset mining,multi-level abstract database,top-k multi-level high-utility itemset
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined