Sequential infiltration of two-photon polymerized 3D photonic crystals for mid-IR spectroscopic applications

Anuj Singhal,Ralu Divan, Anandvinod Dalmiya,Liliana Stan, Arian Ghiacy,Patrick T. Lynch,Igor Paprotny

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A(2024)

引用 0|浏览1
暂无评分
摘要
Photonic crystals (PhCs) are spatially organized structures with lattice parameters equivalent to the operational wavelength of light. PhCs have been subject to extensive research efforts in the last two decades and are known for controlling light propagation with applications in sensing and time-delayed communication due to the slow-light phenomenon. Despite their exceptional properties, PhCs are difficult to fabricate using planar micromachining techniques due to their periodic structures. Techniques like two-photon stereolithography have been discussed for PhC fabrication in the literature, but the inherent disadvantage of poor refractive index (RI) contrast results in limited application. In this work, we present sequential infiltration synthesis performed on two-photon stereolithographically printed 3D PhCs for infiltration with zinc oxide to increase the RI of 3D PhCs. Finite element analysis was performed over a range of RI contrast values to study the change in photonic bandgap (PBG) with RI contrast. The transmission spectra were recorded on 3D PhCs before and after infiltration to demonstrate the change experimentally. An increase in the PBG width and absorbance is seen postinfiltration due to enhanced RI. This work presents the first, to our knowledge, sequentially infiltrated enhanced 3D PhC fabricated with two-photon stereolithography.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要