Macromolecular architectural effects on solution self-assembly of amphiphilic AB-type block copolymers

POLYMER CHEMISTRY(2024)

引用 0|浏览0
暂无评分
摘要
Polymers with different architectures, such as block, graft, star, and cyclic polymers, have been developed owing to recent advances in synthetic technology. Notably, minor changes in the architecture of amphiphilic polymers can lead to different self-assembly behaviors, even when their molecular weights and hydrophilic-hydrophobic compositions are similar. This variation in the self-assembly behavior directly affects the properties and performance of self-assembled polymer-based materials. However, a clear understanding of how changes in polymer architecture influence self-assembly behavior is still emerging. This review aims to compare the self-assembly behaviors of amphiphilic AB-type block copolymers with different molecular architectures and elucidate how different polymer architectures influence self-assembly behaviors, as well as their underlying mechanisms. The discussion extends to recent applications, demonstrating how changes in polymer architecture can influence the performance of polymer assemblies used as carriers in drug delivery systems. This review discusses the self-assembly of amphiphilic linear and various non-linear polymers such as star and cyclic architectures, highlighting how polymer architecture impacts self-assembly behavior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要