Flame-retardant ammonium polyphosphate/MXene decorated carbon foam materials as polysulfide traps for fire-safe and stable lithium-sulfur batteries

JOURNAL OF ENERGY CHEMISTRY(2024)

引用 0|浏览1
暂无评分
摘要
Lithium-sulfur (Li-S) batteries are one of the most promising modern-day energy supply systems because of their high theoretical energy density and low cost. However, the development of high-energy density Li-S batteries with high loading of flammable sulfur faces the challenges of electrochemical performance degradation owing to the shuttle effect and safety issues related to fire or explosion accidents. In this work, we report a three-dimensional (3D) conductive nitrogen-doped carbon foam supported electrostatic self-assembled MXene-ammonium polyphosphate (NCF-MXene-APP) layer as a heat-resistant, thermally-insulated, flame-retardant, and freestanding host for Li-S batteries with a facile and costeffective synthesis method. Consequently, through the use of NCF-MXene-APP hosts that strongly anchor polysulfides, the Li-S batteries demonstrate outstanding electrochemical properties, including a high initial discharge capacity of 1191.6 mA h g-1, excellent rate capacity of 755.0 mA h g-1 at 1 C, and long-term cycling stability with an extremely low-capacity decay rate of 0.12% per cycle at 2 C. More importantly, these batteries can continue to operate reliably under high temperature or flame attack conditions. Thus, this study provides valuable insights into the design of safe high-performance Li-S batteries.(c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
更多
查看译文
关键词
Flame-retardant,MXene,Ammonium polyphosphate,Safety,Lithium-sulfur battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要