Constructing Charge Bridge Path for High-Performance Tin Perovskite Photovoltaics

ADVANCED ENERGY MATERIALS(2024)

引用 0|浏览6
暂无评分
摘要
Tin-based perovskite solar cells (TPSCs) have attracted significant research interest due to their exceptional optoelectronic properties and environmentally friendly characteristics. However, TPSCs with ideal bandgap suffer from substantial current losses, necessitating the development of innovative interface engineering strategies to enhance device performance. In this study, an unprecedented approach constructing charge transfer path is presented by a simple post-growth treatment of 3-Aminomethylbenzo[b]thiophene (3-AMBTh) on the perovskite film. The selective reaction of 3-AMBTh with exposed FA+ on the perovskite surface suppresses the formation of iodine vacancy defects, leading to a reduction in trap density. Additionally, the residual aromatic rings on the surface form an effective pi-pi stacking interaction system with subsequently deposited ICBA, facilitating enhanced charge transfer at the interface. By harnessing the potential of the charge transfer path, the TPSCs exhibit remarkable device efficiency of up to 14.53%, positioning them among the top-performing TPSCs reported to date. A novel constructing charge bridge path strategy is proposed to enhance charge extraction and interface contact at the interface of perovskite layer and electron transport layer in response to the severe current loss problem in tin-based photovoltaics. After the post-treatment of 3-AMBTh, the current density of the device is further improved, thereby increasing the efficiency of tin-based photovoltaics to 14.53%, which is also one of the best-performing devices in tin-based perovskite field.image
更多
查看译文
关键词
charge bridge path,current loss,high-performance,photocurrent,tin perovskite photovoltaics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要