A lamellar chitosan-lignosulfonate/MXene nanocomposite as binder-free electrode for high-performance capacitive deionization

DESALINATION(2024)

引用 0|浏览0
暂无评分
摘要
Ti3C2Tx (MXene) is considered as a superior electrode material for capacitive deionization (CDI) due to its high conductivity and two-dimensional structure. However, the electrochemical performance of pristine MXene nanosheets has been significantly impeded by the surface oxidation in the aqueous media and re-stacking caused by van der Waals forces which reduces the ions storage capacity. In this study, the chitosan-lignosulfonate/ MXene (CLM) composite was used as a binder-free electrode to enhance the ion storage capacity and long-run cycling stability for hybrid capacitive deionization (HCDI). The chitosan-lignosulfonate nanospheres were able to increase the interlayer spacing between the MXene nanosheets effectively, which has significantly enhanced the ion storage capacity and electrochemical properties of the electrode. The binder-free CLM cathode demonstrated a high salt adsorption capacity of 44.6 mg g-1 and a maximum average salt adsorption rate of 5.8 mg g-1 min-1 at 1.2 V. A high cycling stability above 97 % for 30 cycles was observed. Also, the long-term stability of CLM electrode was studied by X-ray photoelectron spectroscopy (XPS) and the results showed that the CLM electrode was not prone to surface oxidation after 30 cycles. This study can guide future development of highperformance 2D material composite electrodes for enhancing capacitive deionization efficiency.
更多
查看译文
关键词
Capacitive deionization,MXene,Chitosan,Lignosulfonate,Desalination
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要