Interfacial -p Electron Coupling Prompts Hydrogen Evolution Reaction Activity in Acidic Electrolyte

INORGANIC CHEMISTRY(2024)

引用 0|浏览3
暂无评分
摘要
The thermodynamically stable 2H-phase MoS2 is a brilliant material toward hydrogen evolution reaction (HER) owing to its excellent Gibbs free energy of hydrogen adsorption. Nevertheless, the poor intrinsic properties of 2H-MoS2 limit its electrocatalytic performances toward HER. In this work, graphitic carbon nitride covalently bridging 2H-MoS2 (MoS2/GCN) is proposed to construct robust HER electrocatalysts. The strong pi-p electron coupling between the delocalized pi electrons of GCN and the localized p electrons of S atoms sufficiently expose active sites and accelerate the reaction kinetics. To be specific, MoS2/GCN exhibits remarkable HER activity (160 mV at 10 mAcm(-2)) and long-term durability. Importantly, MoS2/GCN also provides great potential for industrial application. Density functional theory (DFT) calculations disclose that the pi-p electron coupling at the MoS2/GCN interface regulates the electronic structure of S atoms, consequently providing enhanced HER performance. This work presents a feasible pathway to develop advanced electrocatalysts for energy conversions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要