Integrating single-cell multimodal epigenomic data using 1D-convolutional neural networks.

bioRxiv : the preprint server for biology(2024)

引用 0|浏览4
暂无评分
摘要
Recent experimental developments enable single-cell multimodal epigenomic profiling, which measures multiple histone modifications and chromatin accessibility within the same cell. Such parallel measurements provide exciting new opportunities to investigate how epigenomic modalities vary together across cell types and states. A pivotal step in using this type of data is integrating the epigenomic modalities to learn a unified representation of each cell, but existing approaches are not designed to model the unique nature of this data type. Our key insight is to model single-cell multimodal epigenome data as a multi-channel sequential signal. Based on this insight, we developed ConvNet-VAEs, a novel framework that uses 1D-convolutional variational autoencoders (VAEs) for single-cell multimodal epigenomic data integration. We evaluated ConvNet-VAEs on nano-CT and scNTT-seq data generated from juvenile mouse brain and human bone marrow. We found that ConvNet-VAEs can perform dimension reduction and batch correction better than previous architectures while using significantly fewer parameters. Furthermore, the performance gap between convolutional and fully-connected architectures increases with the number of modalities, and deeper convolutional architectures can increase performance while performance degrades for deeper fully-connected architectures. Our results indicate that convolutional autoencoders are a promising method for integrating current and future single-cell multimodal epigenomic datasets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要