Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules

JOURNAL OF PHYSICAL CHEMISTRY A(2024)

引用 0|浏览4
暂无评分
摘要
We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full dimensionality of the problem using prolate spheroidal coordinates. The method incorporates the gauge-invariant frozen-core approximation, boosts the evaluation of the electron-electron interaction term using finite-element discrete-variable representation with Neumann expansion, and utilizes an exponential time differencing scheme tailored for the stable propagation of the stiff nonlinear orbital functions. We have successfully applied this methodology to study high-harmonic generation in diatomic molecules such as H-2, LiH, and N-2, shedding light on the impact of electron correlations in these systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要