谷歌浏览器插件
订阅小程序
在清言上使用

Revisiting Differentially Private Hyper-parameter Tuning

CoRR(2024)

引用 0|浏览4
暂无评分
摘要
We study the application of differential privacy in hyper-parameter tuning, a crucial process in machine learning involving selecting the best hyper-parameter from several candidates. Unlike many private learning algorithms, including the prevalent DP-SGD, the privacy implications of tuning remain insufficiently understood or often totally ignored. Recent works propose a generic private selection solution for the tuning process, yet a fundamental question persists: is this privacy bound tight? This paper provides an in-depth examination of this question. Initially, we provide studies affirming the current privacy analysis for private selection is indeed tight in general. However, when we specifically study the hyper-parameter tuning problem in a white-box setting, such tightness no longer holds. This is first demonstrated by applying privacy audit on the tuning process. Our findings underscore a substantial gap between current theoretical privacy bound and the empirical bound derived even under strong audit setups. This gap motivates our subsequent investigations. Our further study provides improved privacy results for private hyper-parameter tuning due to its distinct properties. Our results demonstrate broader applicability compared to prior analyses, which are limited to specific parameter configurations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要