Sliding-mediated ferroelectric phase transition in CuInP2S6 under pressure

APPLIED PHYSICS REVIEWS(2024)

引用 0|浏览6
暂无评分
摘要
Interlayer stacking order has recently emerged as a unique degree of freedom to control crystal symmetry and physical properties in two-dimensional van der Waals (vdW) materials and heterostructures. By tuning the layer stacking pattern, symmetry-breaking and electric polarization can be created in otherwise non-polar crystals, whose polarization reversal depends on the interlayer sliding motion. Herein, we demonstrate that in a vdW layered ferroelectric, its existing polarization is closely coupled to the interlayer sliding driven by hydrostatic pressure. Through combined structural, electrical, vibrational characterizations, and theoretical calculations, we clearly map out the structural evolution of CuInP2S6 under pressure. A tendency toward a high polarization state is observed in the low-pressure region, followed by an interlayer-sliding-mediated phase transition from a monoclinic to a trigonal phase. Along the transformation pathway, the displacive-instable Cu ion serves as a pivot point that regulates the interlayer interaction in response to external pressure. The rich phase diagram of CuInP2S6, which is enabled by stacking orders, sheds light on the physics of vdW ferroelectricity and opens an alternative route to tailoring long-range order in vdW layered crystals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要