The effect of Aceria litchii (Keifer) infestation on the surface properties of litchi leaf hosts

Qingkui Song, Jianyu Zheng,Shengde Chen,Yubin Lan, Haifeng Li,Liling Zeng,Xuejun Yue

PEST MANAGEMENT SCIENCE(2024)

引用 0|浏览2
暂无评分
摘要
BACKGROUND: The wettability of target crop surfaces affects pesticide wetting and deposition. The structure and properties of the leaf surface of litchi leaves undergo severe changes after infestation by Aceria litchii (Keifer). The objective of this study was to systematically investigate the surface texture and wettability of litchi leaves infested. RESULTS: Firstly, the investigation focused on the surface structure and physicochemical properties of litchi leaves infested with Aceria litchii. Subsequently, different levels of Contact Angle (CA) were measured individually on the infested litchi leaves. Lastly, Surface Free Energy (SFE) and its polar and dispersive components were calculated using the Owens-Wendt-RabelKaelble (OWRK) method. The outcomes revealed distinctive 3D surface structures of the erineum at various stages of mycorrhizal growth. At stage NO. 1, the height of the fungus displayed a peaked appearance, with the skewness value indicating a surface characterized by more crests. In contrast, at stages NO. 2 and NO. 3, the surface appeared relatively flat. Furthermore, postinfestation of litchi leaves, the CA of droplets on the abaxial surface of diseased leaves exhibited an increase, while the SFE value on the abaxial surface of leaves decreased significantly, in contrast to the abaxial surface of healthy leaves. CONCLUSION: The infestation behavior of Aceria litchii changed the surface structure and chemistry of litchi leaves, which directly affected the CA value of foliar liquids and the SFE value of leaves, changing the surface wettability of litchi leaves from hydrophobic to superhydrophobic. This study provides useful information for improving the wetting and deposition behavior of liquid droplets on the surface of infested leaves. (c) 2024 Society of Chemical Industry.
更多
查看译文
关键词
litchi leaves,Aceria litchii (Keifer),surface structure,contact angle (CA),surface free energy (SFE)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要