Transition from Flat-Band Localization to Anderson Localization in a One-Dimensional Tasaki Lattice.

Physical review letters(2024)

引用 0|浏览5
暂无评分
摘要
We report an extensive experimental investigation on the transition from flat-band localization (FBL) to Anderson localization (AL) in a one-dimensional synthetic lattice in the momentum dimension. By driving multiple Bragg processes between designated momentum states, an effective one-dimensional Tasaki lattice is implemented with highly tunable parameters, including nearest-neighbor and next-nearest-neighbor coupling coefficients and onsite energy potentials. With that, a flat-band localization phase is realized and demonstrated via the evolution dynamics of the particle population over different momentum states. The localization effect is undermined when a moderate disorder is introduced to the onsite potential and restored under a strong disorder. We find clear signatures of the FBL-AL transition in the density profile evolution, the inverse participation ratio, and the von Neumann entropy, where good agreement is obtained with theoretical predictions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要