Toward nano-sized imprinted norepinephrine-derived biopolymer as artificial receptors for detecting IgG1 by surface plasmon resonance

BIOSENSORS & BIOELECTRONICS(2024)

引用 0|浏览0
暂无评分
摘要
Bio-based nanostructured molecularly imprinted polymers (nano-MIPs), also known as 'plastibodies', have a real potential to be used as alternatives to natural antibodies. These nanostructures have recently gained significant attention for diagnostic and therapeutic purposes. In this context, we have developed polynorepinephrine (PNE)based nano-MIPs using an eco-friendly one-pot process for the sensitive and selective detection of a model biomolecule, immunoglobulin IgG1. We first investigated non-imprinted nanostructures (nano-NIPs) based on polydopamine as reference material, using DLS, SEM, and UV-Vis spectroscopy. Subsequently, PNE scaffolds were characterized, both in the form of nano-NIPs and nano-MIPs. Concerning nano-MIPs, we used the epitopedirected imprinting technology to create binding cavities using a small peptide from the constant region of IgG1 as a template. Nano-MIPs were initially immobilized on a sensing surface to assess their binding capacity via surface plasmon resonance (SPR) spectroscopy. This strategy showed very good sensitivity, outperforming planar PNE-based imprinted films while keeping a high selectivity even in complex biological matrices such as human serum. Furthermore, we confirmed the presence of selective binding sites on nano-MIPs by flowing them, along with nano-NIPs, through a microfluidic SPR system, where they interact with the covalently immobilized analyte. This approach resulted in a good imprinting factor of 4.5. Overall, this study underscores the broad potential of these nanostructures as a viable and reusable alternative to antibodies across a variety of bioanalytical, biochemical, and immunohistochemistry analysis techniques.
更多
查看译文
关键词
Molecularly imprinted polymers,Polydopamine,Polynorepinephrine,Nanoparticles,Epitope imprinting,Surface plasmon resonance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要