Construction of chitosan-gelatin polysaccharide-protein composite hydrogel via mechanical stretching and its biocompatibility in vivo

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2024)

引用 0|浏览1
暂无评分
摘要
Natural polysaccharides and protein macromolecules are the important components of extracellular matrix (ECM), but individual component generally exhibits weak mechanical property, limited biological function or strong immunogenicity in tissue engineering. Herein, gelatin (Gel) was deposited to the stretched (65 %) chitosan (CS) hydrogel substrates to fabricate the polysaccharide-protein CS-Gel-65 % composite hydrogels to mimic the natural component of ECM and improve the above deficiencies. CS hydrogel substrates under different stretching deformations exhibited tunable morphology, chemical property and wettability, having a vital influence on the secondary structures of deposited fibrous Gel protein, namely appearing with the decreased beta-sheet content in stretched CS hydrogel. Gel also produced a more homogenous distribution on the stretched CS hydrogel substrate due to the unfolding of Gel and increased interactions between Gel and CS than on the unstretched substrate. Moreover, the polysaccharide-protein composite hydrogel possessed enhanced mechanical property and oriented structure via stretching-drying method. Besides, in vivo subcutaneous implantation indicated that the CS-Gel-65 % composite hydrogel showed lower immunogenicity, thinner fibrous capsule, better angiogenesis effect and increased M2/M1 of macrophage phenotype. Polysaccharide-protein CS-Gel-65 % composite hydrogel offers a novel material as a tissue engineering scaffold, which could promote angiogenesis and build a good immune microenvironment for the damaged tissue repair.
更多
查看译文
关键词
Mechanical stretching,Robust chitosan hydrogel,Secondary structure of gelatin,Biocompatibility in vivo
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要