Non-Covalent Interaction Enhancement on Active/Interfacial Layers via Two-Dimensional Vermiculite Doping for Efficient Organic Solar Cells.

Small (Weinheim an der Bergstrasse, Germany)(2024)

引用 0|浏览0
暂无评分
摘要
Interface modification plays an important role in improving the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the low non-covalent interaction between the cathode interface layer (CIL) and nonfullerene acceptor (NFA) directly affects the charge collection of OSCs. Here, the non-covalent interaction between the CIL and NFA is enhanced by introducing the 2D vermiculite (VML) in the poly(9,9-bis(3'-(N,N-dimethyl)-Nethylammonium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)) dibromide (PFN-Br) interface layer to form an efficient electron transport channel. As a result, the electron extraction efficiency from the active layer to the CIL is increased, and the PCE of OSCs based on PBDB-T:ITIC is boosted from 10.87% to 12.89%. In addition, the strategy of CIL doping VML is proven to be universal in different CIL materials, for which the PCE is boosted from 10.21% to 11.57% for OSCs based on PDINN and from 9.82% to 11.27% for OSCs based on PNDIT-F3N. The results provide a viable option for designing efficient CIL for high-performance non-fullerene OSCs, which may promote the commercialization of OSCs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要