Deep phenotypic profiling of neuroactive drugs in larval zebrafish

biorxiv(2024)

引用 0|浏览1
暂无评分
摘要
Behavioral larval zebrafish screens leverage a high-throughput small molecule discovery format to find neuroactive molecules relevant to mammalian physiology. We screened a library of 650 central nervous system active compounds in high replicate to train a deep metric learning model on zebrafish behavioral profiles. The machine learning initially exploited subtle artifacts in the phenotypic screen, necessitating a complete experimental re-run with rigorous well-wise randomization. These large matched phenotypic screening datasets (initial and well-randomized) provided a unique opportunity to quantify and understand shortcut learning in a full-scale, real-world drug discovery dataset. The final deep metric learning model substantially outperforms correlation distance--the canonical way of computing distances between profiles--and generalizes to an orthogonal dataset of novel druglike compounds. We validated predictions by prospective in vitro radio-ligand binding assays against human protein targets, achieving a hit rate of 58% despite crossing species and chemical scaffold boundaries. These newly discovered neuroactive compounds exhibited diverse chemical scaffolds, demonstrating that zebrafish phenotypic screens combined with metric learning achieve robust scaffold hopping capabilities. ### Competing Interest Statement DK is employed at BioSymetrics, a company that uses AI/ML for drug discovery using phenotypic and diverse data modalities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要