Genetic and bioinformatic analyses reveal transcriptional networks underlying dual genomic coordination of mitochondrial biogenesis.

Fan Zhang, Annie Lee, Anna Freitas,Jake Herb,Zongheng Wang, Snigdha Gupta,Zhe Chen,Hong Xu

bioRxiv : the preprint server for biology(2024)

引用 0|浏览0
暂无评分
摘要
Mitochondrial genome encodes handful genes of respiratory chain complexes, whereas all the remaining mitochondrial proteins are encoded on the nuclear genome. However, the mechanisms coordinating these two genomes to control mitochondrial biogenesis remain largely unknown. To identify transcription circuits involved in these processes, we performed a candidate RNAi screen in developing eyes that had reduced mitochondrial DNA contents. We reasoned that impaired mitochondrial biogenesis would synergistically interact with mtDNA deficiency in disrupting tissue development. Over 638 transcription factors annotated in the fly genome, we identified 77 transcription factors that may be involved in mitochondrial genome maintenance and gene expression. Additional genetic and genomic analyses revealed that a novel transcription factor, CG1603, and its upstream factor YL-1 are essential for mitochondrial biogenesis. We constructed a regulator network among positive hits using the published CHIP-seq data. The network analysis revealed extensive connections, and complex hierarchical organization underlying the transcription regulation of mitochondrial biogenesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要