Bile acids inhibit ferroptosis sensitivity through activating farnesoid X receptor in gastric cancer cells

Chu-Xuan Liu, Ying Gao, Xiu-Fang Xu, Xin Jin, Yun Zhang,Qian Xu,Huan-Xin Ding, Bing-Jun Li, Fang-Ke Du,Lin-Chuan Li,Ming-Wei Zhong,Jian-Kang Zhu,Guang-Yong Zhang

WORLD JOURNAL OF GASTROENTEROLOGY(2024)

引用 0|浏览3
暂无评分
摘要
BACKGROUND Gastric cancer (GC) is associated with high mortality rates. Bile acids (BAs) reflux is a well-known risk factor for GC, but the specific mechanism remains unclear. During GC development in both humans and animals, BAs serve as signaling molecules that induce metabolic reprogramming. This confers additional cancer phenotypes, including ferroptosis sensitivity. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression. However, it is not fully defined if BAs can influence GC progression by modulating ferroptosis. AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells. METHODS In this study, we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis. We used gain and loss of function assays to examine the impacts of farnesoid X receptor (FXR) and BTB and CNC homology 1 (BACH1) overexpression and knockdown to obtain further insights into the molecular mechanism involved. RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells. This effect correlated with increased glutathione (GSH) concentrations, a reduced GSH to oxidized GSH ratio, and higher GSH peroxidase 4 (GPX4) expression levels. Subsequently, we confirmed that BAs exerted these effects by activating FXR, which markedly increased the expression of GSH synthetase and GPX4. Notably, BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR. Finally, our results suggested that FXR could significantly promote GC cell proliferation, which may be closely related to its anti-ferroptosis effect. CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSH-GPX4 axis in GC cells. This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.
更多
查看译文
关键词
Gastric cancer,Ferroptosis,Bile acids,Chenodeoxycholic acid,Farnesoid X receptor,Glutathione
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要