Chiral Covalent Organic Cages: Structural Isomerism and Enantioselective Catalysis

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2024)

引用 0|浏览7
暂无评分
摘要
Covalent organic cages are a prominent class of discrete porous architectures; however, their structural isomerism remains relatively unexplored. Here, we demonstrate the structural isomerism of chiral covalent organic cages that renders distinct enantioselective catalytic properties. Imine condensations of tetra-topic 5,10-di(3,5-diformylphenyl)-5,10-dihydrophenazine and ditopic 1,2-cyclohexanediamine produce two chiral [4 + 8] organic cage isomers with totally different topologies and geometries that depend on the orientations of four tetraaldehyde units with respect to each other. One isomer (PN-1) has an unprecedented Johnson-type J 26 structure, whereas another (PN-2) adopts a tetragonal prismatic structure. After the reduction of the imine linkages, the cages are transformed into two amine bond-linked isomers PN-1R and PN-2R. After binding to Ni(II) ions, both can serve as efficient catalysts for asymmetric Michael additions, whereas PN-2R affords obviously higher enantioselectivity and reactivity than PN-1R presumably because of its large cavity and open windows that can concentrate reactants for the reactions. Density-functional theory (DFT) calculations further confirm that the enantioselective catalytic performance varies depending on the isomer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要