BCS surrogate models for floating superconductor-semiconductor hybrids

Physical Review B(2024)

引用 0|浏览2
暂无评分
摘要
Superconductor-semiconductor hybrid devices, involving quantum dots interfaced with floating and/or grounded superconductors, have reached a level of complexity which calls for the development of versatile and numerically efficient modelling tools. Here, we propose an extension of the surrogate model solver for sub-gap states [Phys. Rev. B 108, L220506 (2023)], which is able to handle floating superconducting islands with finite charging energy. Upon eliminating all finite-size effects of the computationally demanding Richardson model approach, we achieve a more efficient way of calculating the sub-gap spectra and related observables without compromising their accuracy. We provide a number of benchmarks between the two approaches and showcase the versatility of the extended surrogate model solver by studying the stability of spin-triplet ground states in various tunable devices. The methods introduced here set the stage for reliable microscopic simulations of complex superconducting quantum circuits across all their relevant parameter regimes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要