谷歌浏览器插件
订阅小程序
在清言上使用

Stable sequential dynamics in prefrontal cortex represents subjective estimation of time

Yiting Li, Wenqu Yin, Jiawen Li,Shanglin Zhou,Chaolin Ma, Peng Yuan,Baoming Li

biorxiv(2024)

引用 0|浏览16
暂无评分
摘要
Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified “sequential firing” and “activity ramps” as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells with ramping activity patterns showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity might be a more relavent coding regime than the ramping activity in representing time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要