Feature boosting with efficient attention for scene parsing

Vivek Singh, Shailza Sharma,Fabio Cuzzolin


引用 0|浏览2
The complexity of scene parsing grows with the number of object and scene classes, which is higher in unrestricted open scenes. The biggest challenge is to model the spatial relation between scene elements while succeeding in identifying objects at smaller scales. This paper presents a novel feature-boosting network that gathers spatial context from multiple levels of feature extraction and computes the attention weights for each level of representation to generate the final class labels. A novel `channel attention module' is designed to compute the attention weights, ensuring that features from the relevant extraction stages are boosted while the others are attenuated. The model also learns spatial context information at low resolution to preserve the abstract spatial relationships among scene elements and reduce computation cost. Spatial attention is subsequently concatenated into a final feature set before applying feature boosting. Low-resolution spatial attention features are trained using an auxiliary task that helps learning a coarse global scene structure. The proposed model outperforms all state-of-the-art models on both the ADE20K and the Cityscapes datasets.
AI 理解论文
Chat Paper