Calibrating gravitational-wave search algorithms with conformal prediction

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
In astronomy, we frequently face the decision problem: does this data contain a signal? Typically, a statistical approach is used, which requires a threshold. The choice of threshold presents a common challenge in settings where signals and noise must be delineated, but their distributions overlap. Gravitational-wave astronomy, which has gone from the first discovery to catalogues of hundreds of events in less than a decade, presents a fascinating case study. For signals from colliding compact objects, the field has evolved from a frequentist to a Bayesian methodology. However, the issue of choosing a threshold and validating noise contamination in a catalogue persists. Confusion and debate often arise due to the misapplication of statistical concepts, the complicated nature of the detection statistics, and the inclusion of astrophysical background models. We introduce Conformal Prediction (CP), a framework developed in Machine Learning to provide distribution-free uncertainty quantification to point predictors. We show that CP can be viewed as an extension of the traditional statistical frameworks whereby thresholds are calibrated such that the uncertainty intervals are statistically rigorous and the error rate can be validated. Moreover, we discuss how CP offers a framework to optimally build a meta-pipeline combining the outputs from multiple independent searches. We introduce CP with a toy cosmic-ray detector, which captures the salient features of most astrophysical search problems and allows us to demonstrate the features of CP in a simple context. We then apply the approach to a recent gravitational-wave Mock Data Challenge using multiple search algorithms for compact binary coalescence signals in interferometric gravitational-wave data. Finally, we conclude with a discussion on the future potential of the method for gravitational-wave astronomy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要