Epigenome-Wide Association Studies of COPD and Lung Function: A Systematic Review.

American journal of respiratory and critical care medicine(2024)

引用 0|浏览4
暂无评分
摘要
BACKGROUND:Chronic Obstructive Pulmonary Disease (COPD) results from gene-environment interactions over the lifetime. These interactions are captured by epigenetic changes, such as DNA methylation. This systematic review synthesizes evidence from epigenome-wide association studies (EWAS) related to COPD and lung function. METHODS:Systematic literature search on PubMed, Embase and CINAHL databases, identified 1947 articles that investigated epigenetic changes associated with COPD/lung function; 17 of them met our eligibility criteria from which data was manually extracted. Differentially methylated positions (DMPs) and/or annotated genes, were considered replicated if identified by ≥2 studies with a p<1 x 10-4. RESULTS:Ten studies profiled DNA methylation changes in blood and 7 in respiratory samples, including surgically resected lung tissue (n=3), small airways epithelial brushings (n=2), bronchoalveolar lavage (n=1) and sputum (n=1). Main results showed: (1) high variability in study design, covariates and effect sizes, which prevented a formal meta-analysis; (2) in blood samples, 51 DMPs were replicated in relation to lung function and 12 related to COPD; (3) in respiratory samples, 42 DMPs were replicated in relation to COPD but none in relation to lung function; and, (4) in COPD vs. control studies, 123 genes (2.6% of total) were shared between ≥1 blood and ≥1 respiratory sample and associated with chronic inflammation, ion transport and coagulation. CONCLUSIONS:There is high heterogeneity across published COPD/lung function EWAS studies. A few genes (n=123; 2.6%) were replicated in blood and respiratory samples, suggesting that blood can recapitulate some changes in respiratory tissues. These findings have implications for future research.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要