Highly stable and antifungal properties on the oilseed rape of Cu 3 (MoO 4 ) 2 (OH) 2 nanoflakes prepared by simple aqueous precipitation

Scientific Reports(2024)

引用 0|浏览3
暂无评分
摘要
In the last few decades, nanoparticles have been a prominent topic in various fields, particularly in agriculture, due to their unique physicochemical properties. Herein, molybdenum copper lindgrenite Cu 3 (MoO 4 ) 2 (OH) 2 (CM) nanoflakes (NFs) are synthesized by a one-step reaction involving α -MoO 3 and CuCO 3 ⋅Cu(OH) 2 ⋅ x H 2 O solution at low temperature for large scale industrial production and developed as an effective antifungal agent for the oilseed rape. This synthetic method demonstrates great potential for industrial applications. Infrared spectroscopy and X-ray diffraction (XRD) results reveal that CM samples exhibit a pure monoclinic structure. TG and DSC results show the thermal stable properties. It can undergo a phase transition form copper molybdate (Cu 3 Mo 2 O 9 ) at about 300 °C. Then Cu 3 Mo 2 O 9 nanoparticles decompose into at CuO and MoO 3 at 791 °C. The morphology of CM powder is mainly composed of uniformly distributed parallelogram-shaped nanoflakes with an average thickness of about 30 nm. Moreover, the binding energy of CM NFs is measured to be 2.8 eV. To assess the antifungal properties of these materials, both laboratory and outdoor experiments are conducted. In the pour plate test, the minimum inhibitory concentration (MIC) of CM NFs against Sclerotinia sclerotiorum (S. sclerotiorum) is determined to be 100 ppm, and the zone of inhibiting S. sclerotiorum is 14 mm. When the concentration is above 100 nm, the change rate of the hyphae circle slows down a little and begins to decrease until to 200 ppm. According to the aforementioned findings, the antifungal effects of a nano CM NFs solution are assessed at different concentrations (0 ppm (clear water), 40 ppm, and 80 ppm) on the growth of oilseed rape in an outdoor setting. The results indicate that the application of CM NFs led to significant inhibition of S. sclerotiorum . Specifically, when the nano CM solution was sprayed once at the initial flowering stage at a concentration of 80 ppm, S. sclerotiorum growth was inhibited by approximately 34%. Similarly, when the solution was sprayed once at the initial flowering stage and once at the rape pod stage, using a concentration of 40 ppm, a similar level of inhibition was achieved. These outcomes show that CM NFs possess the ability to bind with more metal ions due to their larger specific surface area. Additionally, their semiconductor physical properties enable the generation of reactive oxygen species (ROS). Therefore, CM NFs hold great potential for widespread application in antifungal products.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要