Unveiling the role of ferrous ion in driving microalgae granulation from salt-tolerant strains for mariculture wastewater treatment.

The Science of the total environment(2024)

引用 0|浏览3
暂无评分
摘要
Development of microalgal-bacterial granular sludge (MBGS) from saline-adapted microalgae is a promising approach for efficient mariculture wastewater treatment, whereas the elusive mechanisms governing granulation have impeded its widespread adoption. In this study, spherical and regular MBGS were successfully developed from mixed culture of pure Spirulina platensis and Chlorella sp. GY-H4 at 10 mg/L Fe2+ concentration. The addition of Fe2+ was proven to induce the formation of Fe-precipitates which served as nucleation sites for microbial attachment and granulation initiation. Additionally, Fe2+ increased the prevalence of exopolysaccharide-producing cyanobacteria, i.e. Synechocystis and Leptolyngbya, facilitating microbial cell adhesion. Furthermore, it stimulated the secretion of extracellular proteins (particularly tryptophan and aromatic proteins), which acted as structural backbone for the development of spherical granule form microalgal flocs. Lastly, it fostered the accumulation of exogenous heterotrophic functional genera, resulting in the efficient removal of DOC (98 %), PO43--P (98 %) and NH4+-N (87 %). Nevertheless, inadequate Fe2+ hindered microalgal floc transformation into granules, excessive Fe2+ expanded the anaerobic zone within the granules, almost halved protein content in the TB-EPS, and inhibited the functional genes expression, ultimately leading to an irregular granular morphology and diminished nutrient removal. This research provides valuable insights into the mechanisms by which Fe2+ promotes the granulation of salt-tolerant microalgae, offering guidance for the establishment and stable operation of MBGS systems in mariculture wastewater treatment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要